Extensions 1→N→G→Q→1 with N=C32 and Q=2+ (1+4)

Direct product G=N×Q with N=C32 and Q=2+ (1+4)
dρLabelID
C32×2+ (1+4)72C3^2xES+(2,2)288,1022

Semidirect products G=N:Q with N=C32 and Q=2+ (1+4)
extensionφ:Q→Aut NdρLabelID
C3212+ (1+4) = D1224D6φ: 2+ (1+4)/C2×C4C22 ⊆ Aut C32484C3^2:1ES+(2,2)288,955
C3222+ (1+4) = D1227D6φ: 2+ (1+4)/C2×C4C22 ⊆ Aut C32244+C3^2:2ES+(2,2)288,956
C3232+ (1+4) = D1212D6φ: 2+ (1+4)/D4C22 ⊆ Aut C32488-C3^2:3ES+(2,2)288,961
C3242+ (1+4) = D1213D6φ: 2+ (1+4)/D4C22 ⊆ Aut C32248+C3^2:4ES+(2,2)288,962
C3252+ (1+4) = D1216D6φ: 2+ (1+4)/Q8C22 ⊆ Aut C32488+C3^2:5ES+(2,2)288,968
C3262+ (1+4) = C32⋊2+ (1+4)φ: 2+ (1+4)/C23C22 ⊆ Aut C32244C3^2:6ES+(2,2)288,978
C3272+ (1+4) = C3×D46D6φ: 2+ (1+4)/C2×D4C2 ⊆ Aut C32244C3^2:7ES+(2,2)288,994
C3282+ (1+4) = C3282+ (1+4)φ: 2+ (1+4)/C2×D4C2 ⊆ Aut C3272C3^2:8ES+(2,2)288,1009
C3292+ (1+4) = C3×D4○D12φ: 2+ (1+4)/C4○D4C2 ⊆ Aut C32484C3^2:9ES+(2,2)288,999
C32102+ (1+4) = C62.154C23φ: 2+ (1+4)/C4○D4C2 ⊆ Aut C3272C3^2:10ES+(2,2)288,1014


׿
×
𝔽